기술 직무 안내
  • Readme
  • NAVER Tech Career (Eng)
  • 서비스 소개
    • 검색, 추천 서비스
      • NLP
        • 텍스트 분석 기술
        • 언어 모델
        • Question Answering 기술
      • Data&Analytics
      • 인텐트 검색
      • 웹검색
      • Vision
      • 지식스니펫
      • 쇼핑검색&추천
        • Product Search & Ranking
        • Product Recommendation (AiTEMS)
        • Catalog Matching & Enrichment
      • AiRSearch
        • 글로벌 추천 모델링(AI/ML)
        • 통합 개인화 플랫폼(BE/DE)
        • 통합 검색 모델링(AI/ML)
      • AI Data Platform
      • 지식베이스
      • 클라우드검색솔루션 프로젝트
      • Server Platform
      • Engine & Solution
        • 대용량 분산 검색 엔진 개발
          • 고효율 고성능 색인-검색 컴포넌트 개발
          • 검색 엔진 분산 아키텍쳐 개발
          • 대규모 검색 클러스터 운영 도구 개발
        • 고성능 서버리스 플랫폼 개발
      • 지역검색&추천
        • Local Search
        • AirSPACE
      • 신뢰성 플랫폼
        • Search FE
        • Search Portal
        • Search SRE
    • 공통 플랫폼 기술 개발
      • Next 페이 프로젝트 서버 개발
    • 광고 플랫폼, 여행 검색 외
      • Front-end
      • Back-end
      • AI/ML
      • Data
      • Android
      • iOS
    • 네이버 쇼핑
      • 스마트스토어
      • 버티컬쇼핑서비스
      • 쇼핑검색서비스
      • 라이브커머스
    • 뉴스, 연예, 스포츠 외
      • Back-end
      • ML/Data engineering
    • 블로그, 지식iN/eXpert 외
      • iOS
      • Android
      • Front-end
      • Back-end
      • Data
    • 회원&인증플랫폼
      • iOS
      • Android
      • Back-end
      • Front-end
      • Data
    • 🧑‍🚀Community CIC
      • Global Community Dev FrontEnd
      • Global Community Dev BackEnd
      • Open Community Dev FrontEnd
      • Open Community Dev BackEnd
      • Android
      • iOS
      • Business Data
      • Service Data
      • Core Backend
      • Naver Game Server Dev
      • Naver Game Client Dev
    • 밴드 Cell
      • 밴드 Cell Web
    • NAVER CLOUD AI
      • NAVER AI LAB
      • 음성인식 (Speech Recognition)
      • 음성합성 및 Avatar 생성 기술 연구
      • 클로바 Vision/NLP 연구 개발
      • CLOVA Vision Kit
        • Face AI
        • Video AI
        • Avatar AI
        • Edge AI
        • Edge Solution AI
        • Data Engineer
      • 초대규모 멀티모달 & 시계열 & 쇼핑 모델링 기술 연구개발
      • CLOVA 언어 모델 연구 및 대화 시스템 개발
      • HCI X AI
      • AI 경량화 및 최적화
      • ML 연구 플랫폼 NSML 개발
      • AI/ML 서비스 & 플랫폼 개발
      • AutoML을 이용한 모델 자동 훈련 시스템 개발
      • HyperCLOVA Engineering
      • Document Intelligence
      • 머신러닝을 위한 대규모 데이터 플랫폼 구축
      • 초대규모 AI 모델 학습 / 서빙 시스템 구축 및 운영
      • DATA AI
      • AI Assistant 대화/검색시스템 연구 개발
      • CLOVA Note
        • CLOVA Note App (iOS)
    • ETECH
      • Front-end
      • Back-end
      • Android
      • iOS
      • Data
      • Graphics
    • Maps
      • iOS
      • Android
      • Back-End
    • Music
      • Music iOS
      • Music Android
      • Music Server
      • Music Platform
        • META STORE
        • OPEN-API
        • PARTY ROOM
        • NAVER SEARCH
        • DATA
      • Music AI
      • Music Quality Engineering
      • LINE MUSIC iOS
      • LINE MUSIC Android
      • LINE MUSIC Server
    • Papago
      • Front-end
      • Back-end
      • AI/ML
      • Android
      • iOS
    • PLACE
      • iOS
    • Whale
      • Browser
      • Web Engine
      • Whale OS
      • Front-end
      • Back-end
      • Whale Android
      • Whale iOS
    • Security
      • Service Security
      • Security Development
    • 네이버앱플랫폼Tech
      • Naver App
        • Android
        • iOS
      • PWE앱
        • Android
        • iOS
      • 스마트보드앱
    • WORKS MOBILE
      • iOS
      • Android
  • SmartStudio
    • Front-end
    • Back-end
    • Android
    • iOS
Powered by GitBook
On this page
  1. 서비스 소개
  2. NAVER CLOUD AI

NAVER AI LAB

NAVER AI LAB aims to achieve results that will surprise the world through impactful research, thus contributing to the global AI research community, as the mid&long-term AI research team of NAVER.

PreviousNAVER CLOUD AINext음성인식 (Speech Recognition)

Last updated 1 year ago

Introducing NAVER AI LAB

Meet Research Scientists at NAVER AI LAB

[NAVER AI LAB Job Description]

  • Research topics

    • Including, but not limited to -

    • Next generation of backbones for image, video, and audio recognition.

      • Multimodal hyperscale representation

      • Novel neural architecture design (e.g., NAS).

      • Object recognition (e.g., classification, detection, segmentation, retrieval, etc.).

      • Lightweight and energy-efficient models (e.g., pruning, quantization, compression).

      • Learning with large-scale insufficient annotations (e.g., weakly- / self- / semi-supervised learning).

      • Novel learning algorithms for NNs (e.g., normalization, optimization, etc.).

    • Generative models for image, video, text, and audio

      • Uncoditional & conditional image generation

      • Image-to-image and vid-to-vid translation

      • Disentanglement and controllability

      • Cross-modal generation

      • Audio and music generation

      • Effective learning algorithm for generative models

      • Style transfer and super-resolution for images and videos

      • Neural render (NeRF) and super-resolution

    • Hyperscale language models and their extensions

      • Controllable LM, Hallucination

      • Prompt optimization

      • Multi-modal and Multi-lingual extension.

      • New evaluation metrics

      • Extension to dialogs, QA, summarization, content generation, etc.

    • Human computer interaction and interactive AI.

      • Accessibility

      • Computational Interaction

      • Computational Social Science and Social Computing

      • Data-driven Interface Design

      • Human Computation

      • Visualization

    • Representation learning for semi-structed or structured data.

      • Graph representation learning

      • Time-series prediction and representation learning

    • Trustworthy AI.

      • Explainable AI and causal inference.

      • Robust machine learning (adversarial robustness, domain generalization).

      • De-biased and fair machine learning.

      • Proper uncertainty estimation (e.g. prediction calibration, probabilistic machine learning).

      • Privacy-preserving AI (e.g. differential privacy, federated learning, etc.).

    • Audio recognition.

      • Big representation learning for automatic speech recognition (ASR).

      • Audio-visual speech recognition.

    • Healthcare AI

      • EMR/EHR based foundation models (large-scale pre-trained language models) for healthcare

      • Clinical predictive modeling with EMR/EHR (e.g., disease prediction, ICD code mapping)

      • Clinical decision support system

      • Medical image analysis for otorhinolaryngology & dentistry

      • Interpretability of AI models (XAI)

      • Causal inference in machine learning & intervention modeling for healthcare services

    • Other topics.

      • AI for social good.

      • Reinforcement learning in the wild.

  • AI Research with External Collaboration

    • SNU-NAVER Hyperscale AI Center

      • Professors: Byung-Gon Chun, Gunhee Kim, Seungwon Hwang, Hyunoh Song, Byoung-Tak Zhang, Taesup Moon, Sang-Goo Lee, Kyomin Jung, Kyoung Mu Lee

      • Main topics (not limited)

        • Advanced hyperscale language models (multimodal, multi-lingual)

        • Reliable and efficient distributed training

        • Overcoming limitations of current hyperscale LMs (hallucination, prompt optimization, bias)

        • Advanced large-scale self-supervised learning

      • Some members will contribute as an adjunct professor of SNU.

    • KAIST-NAVER Hypercreative AI Center

      • Professors: Jaegul Choo, Jinwoo Shin, Sung Ju Hwang, Eunho Yang, Jae-Sik Choi, Juho Lee, Kee-Eung Kim, Alice Oh, Juho Kim, Edward Choi, Minjoon Seo

      • Main topics (not limited)

        • Multi- and cross-modal content generation

        • Generation controllability and quality measurement

        • Representation learning for content generation

      • Some members will contribute as an adjunct professor of KAIST.

    • Academic Advisors

      • (NYU): NLP, hyperscale LM

      • (U. of Oxford): Speech recognition and audio-visual representation learning

      • (CMU): Generative models

      • (GIST): Continual and online learning

      • (USC): Reinforcement learning in the wild

  • Requirements

    • Research intern

      • Experience on research collaborations and paper writing in related fields.

      • Proficient programming skills in Python (PyTorch).

      • Preferred

        • Currently in an MS or PhD programme in CS, EE, mathematics or other related technical fields.

        • Proficient track record of publications at top-tier conferences in machine learning, computer vision, natural language processing, audio, hci, and speech.

  • Hiring process:

    • Research intern:

      • Algorithm coding test > Paper implementation or tech talk > Job interview

Click!
Click!
Kyunghyun Cho
Andrew Zisserman
Jun-Yan Zhu
Jonghyun Choi
Joseph Lim
Full publication list